Possible Modulation of Acrylamide Through Cooking Practices

Takayuki Shibamoto

Department of Environmental Toxicology University of California, Davis

Yum! Brands Presentation for OEHHA Workshop

May 12, 2003

Sacramento, CA

General Scheme of Maillard Browning Reaction

Amine Amino acids
Amino acids
Proteins
Phospholipids

Carbonyl Ketones
Sugars
Carbohydrates
Lipids

Aldehydes

Melanoidins (pigments)

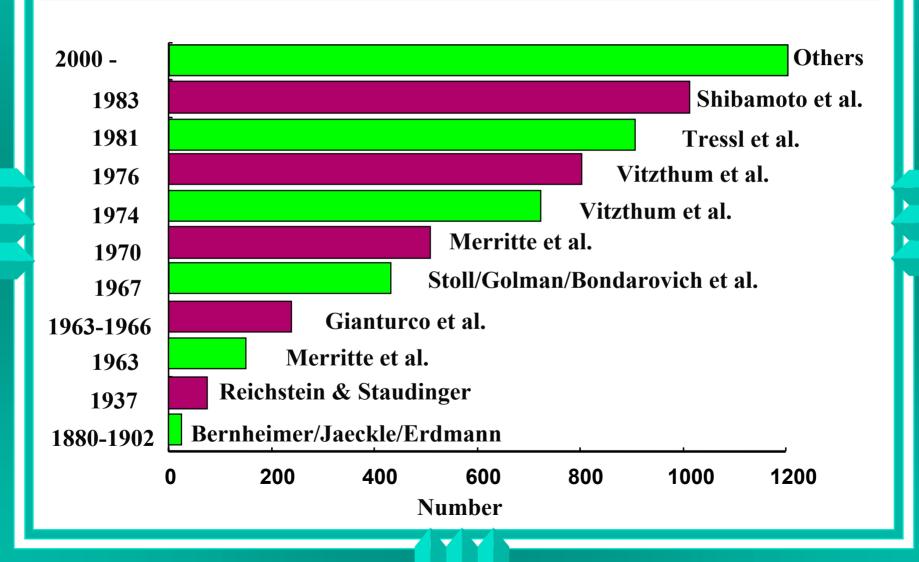
HEAT

Amino-Carbonyl
Interaction
(Amadori Products)

Volatile Compounds (aroma chemicals)

Furans Oxazoles
Pyrroles Imidazoles
Thiophenes Pyridines
Thiazoles Pyrazines

Carbonyls Esters


Amides (Acrylamide)

-Heterocyclic Compounds

Browning Food Creates Palatability

- Palatability determines the desirability/acceptability of food in consumers
- Palatable cooked food is a combination of factors:
 - •Color -- 80% of food desirability is based on appearance
 - Taste/Flavor
 - •Aroma
 - Texture
- Palatability comes from the presence of literally thousands of chemicals created during the cooking process
- **♦** The Maillard browning reactions play a <u>major</u> role in creating those palatability

Approximate Number of Chemicals Found in Browning Reaction

Browning Creates Antioxidants

- **◆** Antioxidants are chemicals with known health benefits
 - Vitamin A
 - Vitamin C
 - Vitamin E
 - Flavonoids
 - Polyphenols
- ◆ Browning produces antioxidants: Starting in the 1990s, my research has shown the formation of powerful antioxidants during the browning process

Typical Heterocyclic Compounds and Their Characteristic Flavor

Furan

Sweet Caramellike

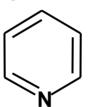
Pyrrole

Sweet Ethereal; Burnt

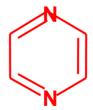
Thiophene

Onion-Like Sulfurous

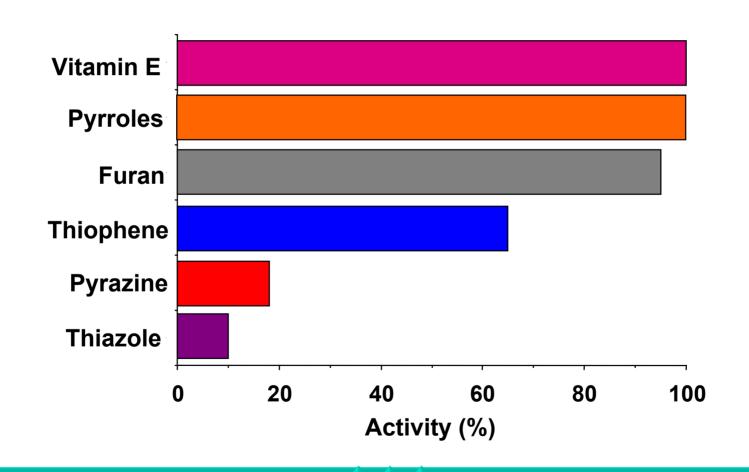
Thiazole


Cookedmeat Sulfurous

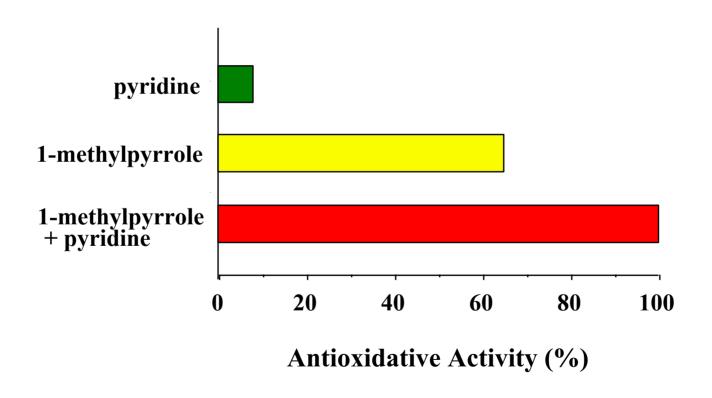
Oxazole


Sweet Roasted

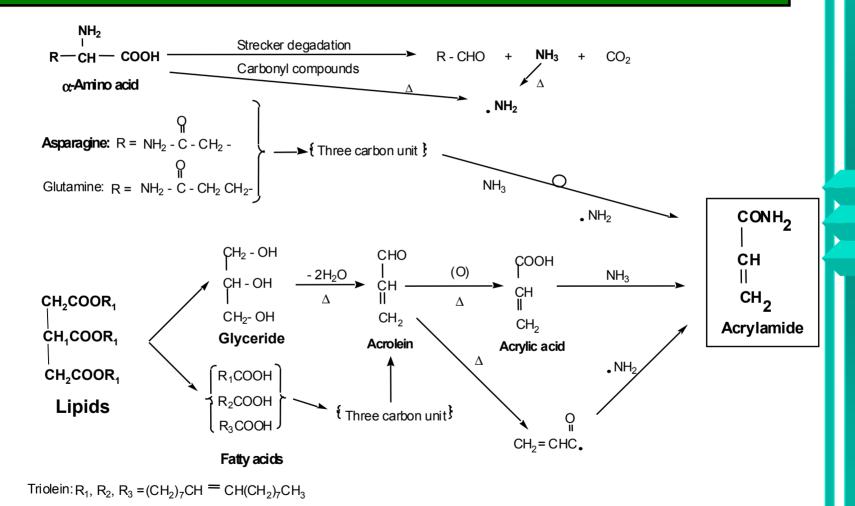
Pyridine


Pungent Smokey Fishy

Pyrazine

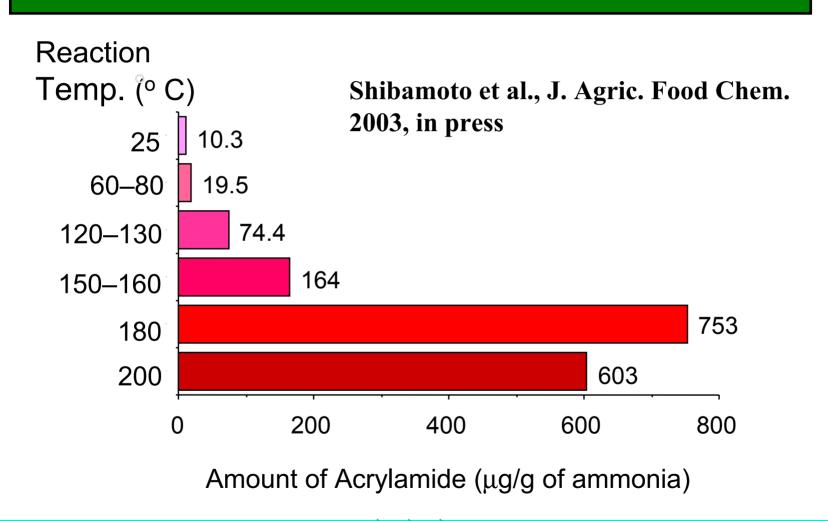


Roasted Toasted Cooked


Antioxidative Activities of Heterocyclic Compounds

Synergistic Antioxidative Activities of Pyridine and 1-Methylpyrrole

Proposed Formation Mechanisms of Acrylamide

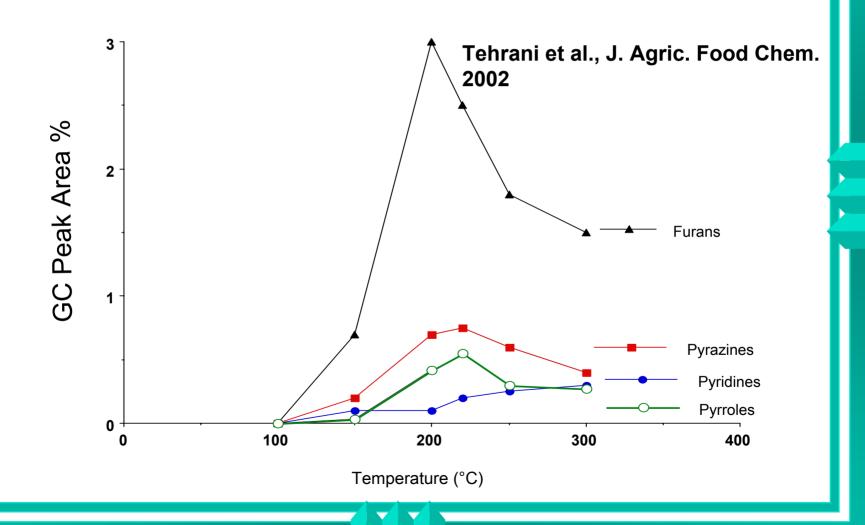


Acrylamide Formed in Browning Model Systems

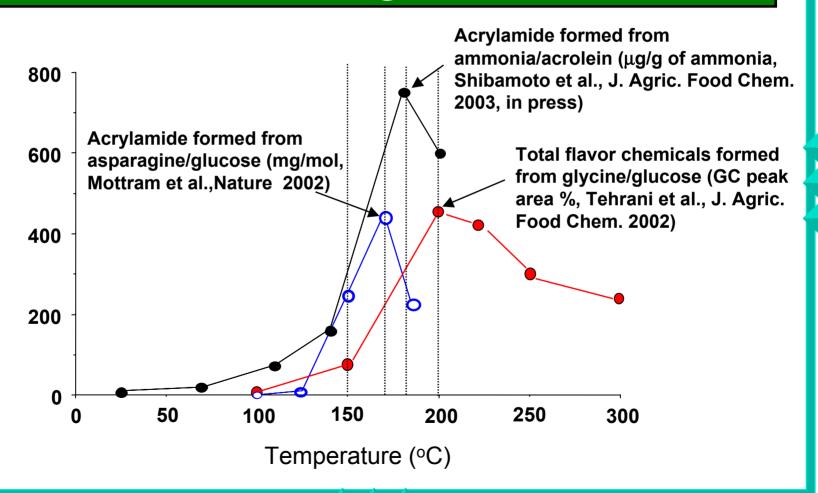
Reactants		T	Amt of Acrylamida
Amines (amount)	Carbonyls (amount)	−Temp. (ºC)	Amt. of Acrylamide (μg/g of amine)
asparagine (1.76 g)	_	180	0.99
asparagine (1.76 g)	triolein (5 g)	180	88.6
glutamine (2 g)	_	180	0.17
glutamine (2 g)	triolein (5 g)	180	3.53
asparagine (1.76 g)	acrolein (0.878 g)	180	114
glutamine (2 g)	acrolein (0.878 g)	180	0.18
asparagine (1.76 g)	glucose (2 g)	180	1,200
ammonia (0.329 g)	acrylic acid (2 g)	180	190,000

Shibamoto et al., J. Agric. Food Chem. 2003, in press

Acrylamide Formed from Ammonia/Acrolein


More Work Will Be Done on Acrylamide Formation Mechanisms

- ♦ Most current research on formation mechanisms uses model systems based on individual chemical reactants; much more research remains to be done on additional model systems
- Research on actual food is only just beginning
- **♦** The impact of various formation mechanisms on acrylamide formation in cooking actual food is not clear
- ♦ It may be impossible to identify every acrylamide formation mechanism by current conventional organic reaction mechanisms because acrylamide formation in food is at extremely low levels
- ◆ Therefore, controlling any particular mechanism, if possible, may not result in controlling final acrylamide levels in food
 - Impossible to predict the effect of modulation efforts on unknown acrylamide formation mechanisms
 - Some modulation efforts conceivably could increase acrylamide formation from other unknown mechanisms


What Does The Current State of Research Mean for Possible Modulation of Acrylamide Levels in Food by Cooking Practices?

- **♦** Current research shows that acrylamide formation is closely related to temperature
- But recall that browning also forms palatability and health-beneficial chemicals
- **♦** Formation of these desirable chemicals also is closely related to temperature
- ♦ Modulation of acrylamide formation by reduction of cooking temperatures will unavoidably result in loss of palatability and health-beneficial chemical formation

Influence of Temperature on Formation of Flavor Chemicals Formed from Glycine/Glucose Maillard Model System

Formation of Acrylamide and Flavor Chemicals in Browning Reaction

Temperature Modulation May Not Be Practical or Effective

- ◆ Temperatures can vary by 10s of degrees within a single cooking process, even with the best process controls
 - Uniform cooking temperature within a single production lot of cooked food may not be achievable with current technology, especially in restaurant settings
- Reduction of temperature to reduce acrylamide also reduces production of beneficial chemicals
 - Temperature modulation will not impact only acrylamide production
- ♦ Reduction of temperature will impact palatability which will affect consumer preferences, with unknown nutritional results
 - Impact of temperature on production of chemicals related to palatability is well-documented

Temperature Modulation May Not Be Practical or Effective

- ♦ Setting specified temperature modulation requirements may not be effective or achievable
 - Multiple chemical production pathways may make specific temperature modulation efforts ineffective in reducing acrylamide levels in cooked food
 - Current cooking technology may not be capable of providing sufficiently precise temperature control to implement temperature modulation
- Setting specified temperature modulation requirements may have unknown results on consumers
 - Customers may override temperature modulation with individual cooking requests
 - Negative impact of temperature modulation on palatability will cause unpredictable changes in consumer choice and may have unpredictable effects on nutrition